
Using Domain-Specific Languages to Improve the

Scale and Integration of Cognitive Models

Scott A. Douglass

Air Force Research Laboratory

6030 S. Kent St.

Mesa, AZ, 85212

480-988-6561 x675

scott.douglass@mesa.afmc.af.mil

Saurabh Mittal

L-3 Communications, Air Force Research Laboratory

6030 S. Kent St.

Mesa, AZ, 85212

480-988-6561 x677

saurabh.mittal@L3com.com

Keywords:

Domain-Specific Languages, ACT-R, Cognitive Modeling and Simulation, DEVS

ABSTRACT: Air Force Research Lab (AFRL) research efforts to transition cognitive modeling from the laboratory

to operational environments are finding that available architectures and tools are difficult to extend, lack support for

interoperability standards, and struggle to scale. This paper describes a component-based cognitive modeling and

simulation framework that exploits the Discrete Event System Specification (DEVS) formalism to eliminate these

impediments. Domain specific languages (DSLs) used in the framework facilitate model scale and interoperability.

The framework and an example DSL called research modeling language (RML) will be discussed.

1. Introduction

AFRL research efforts employing cognitive modeling

are growing in scale and complexity. Researchers

contributing to these efforts are struggling to meet the

challenges of increasing the scale of their models and

integrating them into software-intensive training

environments. The struggle has two sources: (1) the

need to specify detailed knowledge and process

descriptions in our modeling frameworks; (2) a

dependence on specialized simulators in our modeling

frameworks that isolates our models from standards,

methods, and tools utilized by the larger systems

engineering community.

An AFRL large-scale cognitive modeling (LSCM)

research initiative is developing solutions to these scale

and interoperability challenges based on high-level

languages for describing cognitive models and

simulation frameworks supporting them based on the

Discrete Event System Specification (DEVS)

formalism (Zeigler, Kim & Praehofer, 2000). This

paper discusses a cognitive modeling and simulation

framework that represents our best solution so far. The

paper begins with an overview of the approaches and

objectives of LSCM. Then the paper describes the

actual framework. The remainder of the paper

describes the research modeling language (RML), one

of the domain-specific languages (DSLs) supported in

the framework. This discussion of RML demonstrates

how cognitive models can be specified in DSLs that

facilitate scale through abstraction. The discussion also

explains how RML models are executed in the

cognitive modeling and simulation framework.

2. Large Scale Cognitive Modeling (LSCM)

The LSCM initiative is seeking to adapt and exploit

methods and practices from Model Integrated

Computing (MIC) and advanced modeling and

simulation (M&S) in order to help cognitive modelers

increase the scale and interoperability of their models:

1. MIC is being adapted and exploited to facilitate

DSL development and model/systems integration.

2. Advanced M&S is being adapted and exploited to

achieve increased scale and interoperability.

2.1 Model Integrated Computing (MIC)

The LSCM initiative is researching solutions to the

scale and interoperability challenges based on Model

Integrated Computing (MIC), a general modeling and

systems integration paradigm (Sztipanovits & Karsai,

1997). MIC facilitates LSCM because it: (1) allows

cognitive modelers to specify models in DSLs tailored

to the needs of cognitive modeling; (2) supports the

composition of these DSLs (Balasubramanian,

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAR 2011 2. REPORT TYPE

3. DATES COVERED
 00-00-2011 to 00-00-2011

4. TITLE AND SUBTITLE
Using Domain-Specific Languages to Improve the Scale and Integration
of Cognitive Models

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory,6030 S. Kent St,Mesa,AZ,85212

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Behavior Representation in Modeling and Simulation(BRIMS), Utah, March 2011

14. ABSTRACT
Air Force Research Lab (AFRL) research efforts to transition cognitive modeling from the laboratory to
operational environments are finding that available architectures and tools are difficult to extend, lack
support for interoperability standards, and struggle to scale. This paper describes a component-based
cognitive modeling and simulation framework that exploits the Discrete Event System Specification
(DEVS) formalism to eliminate these impediments. Domain specific languages (DSLs) used in the
framework facilitate model scale and interoperability. The framework and an example DSL called
research modeling language (RML) will be discussed.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

8

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Schmidt, Molnár, & Lédeczi, 2007): (3) automates the

integration of models specified in these DSLs into task

environments or larger systems (Balasubramanian,

Schmidt, Molnár, & Lédeczi, 2008); and (4) provides

automated model-to-model (M2M) transformation

capabilities that produce executable code artifacts from

models specified in these DSLs.

2.2 Modeling and Simulation (M&S) using DEVS

The LSCM initiative is also exploring how the Discrete

Event System Specification (DEVS) formalism

(Zeigler, Kim & Praehofer, 2000) can be used to

semantically anchor DSLs. This aspect of LSCM is

investigating how computationally realizing DSLs in

DEVS: (1) provides them with a behavioral semantics

that can be directly executed in advanced DEVS

simulators; and (2) allows models specified in them to

interoperate with other DEVS and HLA compatible

components in broader systems-of-systems (Zeigler,

Mittal, & Hu, 2008).

3. A Component-Based Cognitive Modeling

and Simulation Framework

As our cognitive modeling ambitions grow, the

inability to share significant models, to make them

components of larger system of integrated and

extended models, amplifies the costs of cognitive

modeling. To share and integrate our models, we must

find a way to generally cast them as components in

larger M&S frameworks. We are developing a

cognitive M&S framework that will allow modelers to

define and execute componentized models.

From an architectural perspective, the framework

consists of net-centric M&S infrastructure based on the

DEVS formalism. The architecture technically realizes

a Discrete Event System Specification Modeling

Language (Mittal, Martin & Zeigler, 2007) in a

DEVSML stack. From a user perspective, the

framework consists of a set of DSLs that are

automatically transformed into the DEVSML and

executed in a transparent M&S infrastructure.

3.1 DEVS Modeling Language (DEVSML) Stack

An earlier DEVSML stack realized models in Java and

in a platform independent DEVS Modeling Language

that used XML as a means of message passing (Mittal,

Martin & Zeigler, 2007). The model semantics were

bound together by XML and JAVAML was used to

translate Java models into the XML. DEVSML is

based on an EBNF grammar and is supported by a

DEVS standards-compliant middleware API. The

middleware enables model execution in a net-centric

service oriented architecture (SOA).

Figure 1. Extended DEVSML stack using Model-to-

Model (M2M) and Model-to-DEVS (M2DEVS)

transformations to enhance model and simulator

transparency.

Research efforts in LSCM are extending the current

DEVSML stack so that DSLs can be used to specify

platform independent models (PIMs) that are devoid of

any DEVS and programming language constructs

(Figure 1). The two pieces that have been added to the

current DEVSML stack to enable the use of DSLs are

the Model-to-Model (M2M) transformation and the

Model-to-DEVS (M2DEVS) transformation. To

capitalize on these new pieces, the user develops

models in DSLs and employs M2M and/or M2DEVS

transformations to provide a DEVS execution

“backend” to the models. The key benefit of these

additions is that domain specialists need not develop

DEVS expertise to use the DEVSML stack.

3.2 Domain-Specific Languages (DSLs)

DSLs used in the DEVSML stack are developed using

the Generic Modeling Environment (GME), the

centerpiece modeling technology of MIC. To develop a

DSL, a meta-modeler specifies its abstract and concrete

syntaxes in GME. The abstract syntax captures the

concepts, constraints and relationships relevant to a

domain using abstractions that exploit domain-specific

knowledge and processes. The concrete syntax allows a

modeler, acting more like an end user than a

programmer, to visually/textually specify models that

people with similar domain expertise can easily

comprehend. To use a DSL, a modeler configures

GME so that it supports the use of the DSL and then

specifies models in the DSL’s concrete syntax.

DSLs developed in GME can be formally related to

each other by integrating their abstract syntaxes. DSLs

related in this way can undergo automated model-to-

model (M2M) transformations. These M2M

transformations can translate a model specified in one

DSL into a model expressed in another related DSL.

M2M transformations can also relate DSLs to

languages that execute in simulators. Model-to-DEVS

(M2DEVS) transformations available in the extended

DEVSML stack (Figure 1) translate models specified

in DSLs into DEVSML. Since DEVSML interoperates

with DEVS middleware, the M2DEVS transformation

process semantically anchors DSLs in DEVS and

makes them executable. M2M transformation can be

performed in GME and/or in technologies such as

Xtext/Xpand (see references for information).

3.3 Benefits of an Extended DEVSML Stack

The addition of M2M and M2DEVS transformations to

the DEVSML stack adds true model and simulator

transparency to a net-centric SOA infrastructure. The

transformations yield DEVS models that are platform

independent models (PIMs) that can be developed,

compared and shared in a collaborative process.

Finally, the extended DEVML stack allows DSLs to

interact with DEVS middleware through an API. This

capability enables the development of simulations that

combine and execute DEVS and non-DEVS models.

This hybrid M&S capability facilitates interoperability.

4. Research Modeling Language (RML)

The research modeling language (RML) is a DSL used

to specify cognitive models in the DEVSML stack. The

abstract syntax of RML is influenced by the ACT-R

cognitive architecture (Anderson, 2007). The concrete

syntax of RML is designed so that a modeler with

experience in ACT-R can specify behaviorally

equivalent models at a higher level of abstraction.

4.1 The Abstract Syntax of RML

The abstract syntax of RML includes concepts,

constraints and relations that capture the behavior of a

set of independent modules that each processes a

different kind of knowledge. Cognitive activity arises

from interactions between behavioral representations

and these modules.

Module Role in Cognition

Audio Localizing and identifying sounds in the

environment

Declarative Storing and retrieving information in an

associative memory

Motor Controlling the hands

Speech Producing speech

Vision Identifying objects in the visual field

Table 1. Modules assumed in RML’s abstract syntax.

4.1.1 Declarative Knowledge

The abstract syntax of RML assumes that declarative

knowledge is represented as predicates capturing

relationships between entities. Transient declarative

knowledge resides in a working memory. Knowledge

is added to working memory by: (1) environment

events; (2) active attention; (3) module processes; and

(4) the direct utilization of procedural knowledge.

Declarative knowledge is maintained in a semantic

network. Nodes in the network represent the classes,

properties, and instances constituting a body of

knowledge. Nodes are connected by edges representing

relations. Nodes maintain information about: (a)

retrieval parameters; (b) reference histories; and (c) last

activation levels. Nodes use ACT-R’s chunk activation

equations to compute their activations and therefore

mimic ACT-R’s frequency, recency and memory decay

effects. New nodes are acquired and existing nodes

strengthened in such a way that declarative learning in

the semantic network replicates the behavior of ACT-

R’s declarative memory. Retrievals are achieved

through ACT-R’s retrieval equations and parallel

spreading activation in the semantic network. Douglass

& Myers (2010) describe the design and performance

of RML’s declarative memory system.

4.1.2 Procedural Knowledge

The abstract syntax of RML assumes that procedural

knowledge is represented in behavior models that

explicitly represent cognitive state, context, alternative

courses of action, and failure. These models are

formally represented as extended finite state machines

(EFSMs). EFSMs are a 4-tuple:

EFSM = <S, s0, LSV, TRA>, where

S : set of states

s0 : start state

LSV : set of locally scoped variables

TRA : set of transitions

A single start state must be included in the set of states

(S). A number of optional stop states may be included

in S. The LSV and TRA sets can be empty. There is

nothing corresponding to EFSMs in ACT-R; it is not

possible to explicitly represent behavior organized

above the level of the production in ACT-R.

In the following descriptions of locally scoped

variables and transitions, type information is included

in parentheses. Definitions and a grammar formally

describing these types can be found in Appendix A.

Locally scoped variables are a 2-tuple:

LSV = <N, V>, where

N : name (Variable_Name)

V : value (Variable_Value)

LSVs maintain representations of context. For

example, aspects of declarative knowledge originating

in the declarative module can be maintained in LSVs

over the course of cognitive activity. LSVs maintain

context in the same way key/value pairs represent

context in ACT-R buffer chunks.

Transitions are a 9-tuple:

TRA = <P, S, D, L, Pr, Cp, F, A, Ps>, where

P : priority (Integer)

S : source (State_Name)

D : destination (State_Name)

L : label (String)

Pr : pre-bindings (Binding)

Cp : context patterns (Pattern)

F : functions (Function)

A : assertions (Assertion)

Ps : post-bindings (Binding)

Priority (P): preferences/estimates of utility that

resolve conflict when more than one transition is

possible from a state.

Source (S): the state from which a transition originates.

A destination (D) is the state to which a transition

leads. Source and destination indicators are similar

to state-specific key/value pairs used in ACT-R

models to maintain behavior across productions.

Label (L): a description of the function/purpose of a

transition. Labels are similar to documentation

strings that can be associated with ACT-R

productions.

Pre-bindings (Pr): “name=value” pairs used to: (1)

ensure that LSVs have a specific value (values are

constants); or (2) retrieve elements from context

(values are variables). Pre-bindings are similar to

left-hand-side key/value constraints in ACT-R.

Context patterns (Cp): predicate constraints that must

be met for a transition to be allowed. Patterns can

be: (1) used to ensure that particular pieces of

declarative knowledge are in working memory or

not (predicate patterns contain only constants); or

(2) used to bind elements related by predicates in

working memory (predicate patterns contain

variables). Context patterns are similar to left-hand-

side (LHS) key/value constraints in ACT-R.

Functions (F): execute calculations involving LSVs

and context pattern elements. They are provided in

RML because they significantly increase the

representational power of state machines.

Assertions (A): predicates added to working memory

after a transition has completed. Assertions are

similar to right-hand-side (RHS) key/value actions

in ACT-R.

Post-bindings (Ps): name/value pairs that will add to

or overwrite LSVs maintained by an EFSM.

4.2 The Concrete Syntax of RML

RML’s concrete syntax provides users with a hybrid

(visual/textual) language in which they specify the

declarative and procedural knowledge underlying a

model. RML’s meta-model includes constraints that

check the validity of models. These constraints guide

modeler actions and ensure that the concrete syntax of

a RML model is correct by construction.

4.2.1 Declarative Knowledge

As previously stated, RML’s abstract syntax assumes

that declarative knowledge is represented as predicates

capturing binary relationships between entities. This

assumption allows RML to accommodate declarative

knowledge specified in any OWL-compatible ontology

authoring application. Declarative knowledge can

currently be specified in GME or Protégé. Douglass &

Myers (2010) describe the role ontologies play in RML

and give visual/textual examples of declarative

knowledge.

4.2.2 Procedural Knowledge

RML’s concrete syntax allows modelers to

visually/textually specify procedural knowledge

(EFSMs) in GME. EFSMs are individually specified

and can be grouped into libraries that facilitate the

development of behavior model repositories.

Figure 2. Visual aspects of RML’s concrete syntax.

The Part Browser provides users with a pallet of states

and the GME Browser helps them to organize behavior

models into libraries.

The individual EFSM corresponding to the

attend_and_comprehend aggregate selected in Figure

2 is shown in Figure 3. Notice how transition labels

and state names summarize and document the

represented behavior at a high level of abstraction;

effectively concealing the formal details of the EFSM

from the user.

Figure 3. EFSM representing behavior that locates,

attends to, and retrieves declarative knowledge about

an object.

States are added to an EFSM by selecting one of the

desired types from GME’s Part Browser and clicking

where in the EFSM the new state should be positioned.

Transitions are added to an EFSM by clicking the

source state and then dragging a connection to the

destination state. The formal attributes of a transition

can be edited by selecting it and adding/editing textual

aspects of its underlying 9-tuple.

Figure 4. Transition attributes specifying how attention

is focused onto the Lx/Ly coordinates of a visual

location. Note how the source (S) and destination (D)

attributes are missing. They are explicit in EFSM

diagrams and therefore not textual transition attributes.

4.3 The Semantic Anchoring of RML

Models specified in RML can obtain behavioral

semantics through two transformation processes. Each

process semantically anchors RML in a M&S

framework that supports model execution and

performance logging.

4.3.1. Transforming RML to Erlang

To explore how concurrency in computer languages

and multi-core CPUs facilitate scale, we have

developed a RML translation and runtime environment

(RTE) in the Erlang programming language (Cesarini

& Thompson, 2009). The RTE automatically translates

OWL-compatible ontologies (declarative knowledge)

and EFSMs authored in GME (procedural knowledge)

into executable Erlang. Ontologies are translated into

node and edge descriptions that are used by the RTE to

configure a semantic network. EFSMs are transformed

into executable Erlang modules.

4.3.2. Transforming RML to DEVS

To explore how a component-based M&S framework

facilitates scale and interoperability, we have also

developed a M2DEVS transformation that anchors

RML in the DEVSML-based framework. The

transformation is based on a subset of DEVS called

XML-Based Finite Deterministic DEVS (XFDDEVS)

(Mittal, Zeigler, Ho 2008). XFDDEVS is essentially a

DSL that is semantically anchored in DEVS.

XFDDEVS allows users to specify finite-deterministic

state machines. These specifications can then be

automatically transformed into the DEVS formalism.

To transform RML EFSMs into DEVS the M2DEVS

translation process: (1) transforms RML into

XFDDEVS; and (2) transforms XFDVEVS into DEVS.

passive(inf)

beginLocating (0)

?attend_comprehend

locating(50)

 !get_vis_location

? Encoding_complete

!

Attended_and_comprehended

(Id, Lobj, T2) beginAttending(0)

attending(50)

! focus_attention

! focusing_on (lx,ly)

! resource(Visual,busy)

? Vis_location

beginRemembering(0)

remembering(50)

! Exec_retrieval (name=LS, type=Type, C)

! Resouce (Declarative, busy)

remeberingComplete(0)

? retrieval_success

Figure 5: FDDEVS state machine corresponding to

attend_and_comprehend. The state labeled “passive”

corresponds to the start state of the EFSM.

Figure 5 shows a FDDEVS state machine after the

automated transformation process. The solid lines show

external events i.e. incoming messages depicted with

prefix ?. The dotted lines show internal event

transitions. The generated messages are depicted with a

prefix !. The timeout for each state are in the

parenthesis. The FDDEVS state machine in Figure 5

computationally realizes the RML EFSM in Figure 3 in

the DEVSML stack and is executed in simulation.

5. RML Model of the Fan-Effect

The fan-effect (Anderson & Reder, 1999) reflects the

impact of knowledge complexity on human memory.

As a person memorizes additional facts involving a

concept, the amount of time it takes them to retrieve

any one of these facts increases. A model of the fan-

effect has been developed in RML in order to

demonstrate its application in cognitive modeling.

The exercise of specifying a RML model of the fan-

effect illustrates two points: (1) a DSL with an abstract

syntax employing critical aspects of a cognitive

architecture like ACT-R retains the cognitive fidelity of

those aspects; (2) a DSL permitting the specification of

behavior at a level of organization above the

production supports the development of behavioral

sub-assemblies. The first point demonstrates that new

modeling formalisms designed to facilitate scale and

interoperability need not abstract their users from

empirically important details. The second point

illustrates how complexity can be managed through

hierarchy. Models can be built from sub-assemblies

that conceal complexity rather than large numbers of

primitives that expose complexity.

Figure 6. EFSM representing behavior that

comprehends a person, comprehends a location, and

then identifies a trial as a target or a foil.

The RML fan-effect model consists of two

communicating EFSMs:

- attend_and_comprehend: (Figure 3) representing

behavior during a repeated attend/comprehend

subtask.

- fan_task: (Figure 6) representing behavior at the

task level.

While a complete description of the RML model is

beyond the scope of this paper, a description of a single

transition will illustrate the similarity between RML

transitions and ACT-R productions. The top cell of

Figure 7 shows the attributes of the transition selected

(bold) in Figure 6. These attributes are expressed in a

transition-centric textual DSL developed in Xtext. The

DSL provides users with an alternative way to

author/edit RML EFSMs. The bottom cell of Figure 7

shows a comparable production from an ACT-R model

of the fan-effect.

transition {

 priority 2

 label "person and location match"

 src identifying_target_or_foil

 dst stopstate

 pre_binds p=P,l=L

 patterns {retrieval_success, C, _},

 {has_person, C, P},

 {has_location, C, L}

 assertions {respond, {press_key, “k”}}

}

(P yes

 =imaginal>

 ISA comprehend-sentence

 arg1 =p

 arg2 =l

 =retrieval>

 ISA comprehend-sentence

 arg1 =p

 arg2 =l

 ?manual>

 state free

==>

 +manual>

 ISA press-key

 key "k"

)

Figure 7. RML EFSM transition “person and location

match” compared to an equivalent ACT-R production.

The RML transition explicitly represents source (src)

and destination (dst) states. The ACT-R production

lacks explicit state constraints and therefore either: (a)

depends on implicit state constraints; or (b) represents

key press behavior in any context where matching

chunks of type comprehend-sentence are available in

the imaginal and retrieval buffers. The RML transition

uses pre-bindings P and L to ensure that binary

relations has_person and has_location relate C (an

event) to P (a person) and L (a location). The ACT-R

production uses variables =p and =l to similarly ensure

that the retrieved comprehend-sentence conforms with

arg1 (a person) and arg2 (a location) represented in the

imaginal buffer. The RML transition and the ACT-R

production have functionally equivalent assertions and

right-hand-side actions.

The EFSM transition process in the RML RTE during

simulation is based on: (1) the accumulation of match

bindings when patterns match context (knowledge in

working memory); (2) the optional augmentation of

match bindings through functions; and (3) the

instantiation of assertions with match bindings. As

transitions occur during runtime, a sequential pattern

matching process realizes a type of forward chaining. If

a transition time cost of 50ms and ACT-R’s time costs

for attention shifts, motor responses, and declarative

retrievals are adopted during simulation, this forward

chaining closely matches production firing in ACT-R.

When the RML model of the fan-effect is simulated in

either the Erlang RTE or the DEVSML stack, retrieval

successes, failures, latencies, and task actions precisely

matching those of the fan-effect model described in the

ACT-R instructional materials are produced.

6. Conclusions

AFRL research efforts employing cognitive modeling

are growing in scope. These efforts to transition

cognitive modeling from the laboratory to operations

settings are struggling to meet challenges associated

with: (1) increasing the scale of models; and (2)

integrating models into software-intensive task

environments. An AFRL LSCM initiative is

researching solutions to these challenges based on

high-level languages (DSLs) for describing cognitive

models and simulation frameworks supporting them.

These DSLs allow users to specify models in

formalisms that use abstractions and re-useable sub-

assemblies to achieve scale. The M&S frameworks

allow users to simulate models in architecture that

improves model integration and interoperability using

the DEVSML stack.

This paper describes RML, a DSL influenced by ACT-

R in which cognitive activity can be explicitly

represented above the level of the production. RML

illustrates how DSLs designed to facilitate scale need

not isolate users from empirically important details. In

introducing RML, we faced a choice of either showing

how organizing behavior models above the level of the

production facilitates scale or demonstrating how

models executing in the DEVSML stack can be as

cognitively plausible as an ACT-R model. We opted

for the latter choice and demonstrated, with a model of

the fan effect, that RML does not abstract users from

empirically important details. On-going and future

research efforts will demonstrate the usability and

scalability of RML and other LSCM initiative DSLs.

7. References

Anderson, J.R. (2007). How Can the Human Mind Occur in

the Physical Universe? Oxford: OUP.

Anderson, J.R. & Reder, L.M. (1999). The fan effect: New

results and new theories. Journal of Experimental

Psychology: General, 128(2), 186-197.

Balasubramanian, K., Schmidt, D.C., Molnár, Z. & Lédeczi,

A. (2007). Component-Based System Integration via

(Meta)Model Composition. ECBS '07: Proceedings of

the 14th Annual IEEE International Conference and

Workshops on the Engineering of Computer-Based

Systems (pp. 93-102). Washington, DC: IEEE Computer

Society.

Balasubramanian, K., Schmidt, D. C., Molnár, Z. & Lédeczi,

A. (2008). System Integration using Model-Driven

Engineering. In P. F. Tiako, Designing Software-

intensive Systems: Methods and Principles (pp. 474-

504). Idea Group Inc.

Cesarini, F., & Thompson, S. (2009). Erlang Programming.

O'Reilly Media, Inc.

Douglass, S.A., Ball, J. & Rogers, S. (2009). Large

declarative memories in ACT-R. In Proceedings of the

9th International Conference of Cognitive Modeling,

Manchester, United Kingdom.

Douglass, S.A. & Myers, C.W. (2010). Concurrent

knowledge activation calculation in large declarative

memories. In D. D. Salvucci & G. Gunzelmann (Eds.),

Proceedings of the 10th International Conference of

Cognitive Modeling, Philadelphia, Pennsylvania, USA.

Mittal, S., Martin, J.L.R. & Zeigler, B.P. (2007). DEVSML:

Automating DEVS simulation over SOA using

transparent simulators, In Proceedings of DEVS

Syposium.

Mittal, S., Zeigler, B.P., Ho, M.H (2008), XFDDEVS: XML-

Based Finite Deterministic DEVS at:

http://www.duniptechnologies.com/research/xfddevs/

Molnár, Z., Balasubramanian, D. & Lédeczi, A. (2007). An

introduction to the Generic Modeling Environment. In

Proceedings of the TOOLS Europe 2007 Workshop on

Model-Driven Development Tool Implementers Forum.

Zurich.

Sztipanovits, J. & Karsai, G. (1997). Model-integrated

computing. Computer , 30 (4), 110-111.

Xpand Model Transformation Framework accessible at:

http://www.eclipse.org/modeling/m2t

Xtext Language Development Framework accessible at:

http://www.eclipse.org/Xtext/

Zeigler, B.P., Mittal, S. & Hu, X. (2008). Towards a formal

standard for interoperability in M&S/system of systems

integration. Proc. GMU-AFCEA Symposium on Critical

Issues in C4I.

Zeigler, B.P., Praehofer, H. & Kim, T.G. (2000). Theory of

Modeling and Simulation (2nd Edition). Academic Press.

8. Acknowledgements

This research was funded through AFOSR grant

#10RH05COR.

9. Author Biographies

SCOTT DOUGLASS is a research psychologist with the

Cognitive Models and Agents Branch of AFRL’s Human

Effectiveness Directorate. He received his PhD (2007) in

Cognitive Psychology from Carnegie Mellon University. His

current research interests include large-scale cognitive

modeling, generative cognitive architectures, and the

modeling of situated action.

SAURABH MITTAL is a research scientist at AFRL for L-

3 Communications. He received both his PhD (2007) and MS

(2003) in Electrical and Computer Engineering from the

University of Arizona. His current research interests include

executable architectures using SOA, DEVS Unified Process,

cognitive systems, and multiplatform modeling.

Appendix A

Atoms are constant literals that stand for themselves. They start with a lowercase letter. Subsequent characters can be

uppercase, lowercase, numbers, or '_'.

Variables are used to store the value of simple or composite data types. They start with an uppercase letter. Subsequent

characters can be uppercase, lowercase, numbers, or '_'.

Tuples are a composite data type. They are used to store collections of items. These items need not be the same type.

Tuples are delimited by "{" and "}". Elements in a tuple are separated by ",".

Lists are a composite data type. They are used to store collections of items. List items need not be the same type. Lists

are delimited by "[" and "]". Elements in a list are separated by ",". Lists can be broken into a head and a tail with a

constructor operator "|".

Additional aspects of RML EFSMs are defined in the following grammar.

Note:

A : Exactly 1 A

A? : 0 or 1 A

A+ : 1 or more A

A* : 0 or more A

Base Types

Number -> (Integer | Float)

Atomic -> (Atom | Variable | String | Number | [] | _)

Composite -> (List | Tuple)

States and Variables

State_Name -> Atom

Variable_Name -> Atom

Variable_Value -> Member

Transitions

Binding -> Variable_Name '=' Member

Pattern -> Tuple ('=' Variable_Name)* Guard*

Function -> (Atomic | Composite) '=' (Case | Comp_Exp | Arith_Exp | Funcall | Atomic | Composite)

 | Logic_Exp

Assertion -> Tuple

Expessions

Arith_Literal -> (Funcall | Number | Symbol | Variable)

Arith_Exp -> Expression using arithmetic operators, optional parentheses and Arith_Literals

Comp_Literal -> (Arith_Exp | Atomic | Composite)

Comp_Exp -> Expression using comparison operators, optional parentheses and Comp_Literals

Logic_Literal -> (Comp_Exp | Arith_Exp)

Logic_Exp -> Expression using logical operators, optional parentheses and Logic_Literals

Miscellaneous

Funcall -> Function '(' (Member (',' Member)*)? ')'

Member -> (Logic_Exp | Funcall | Atomic | Composite)

Guard -> 'when' Logic_Exp ;

CaseTest -> (Atomic | Composite) Guard? ;

CaseRes -> (Case | Atomic | Composite | Logic_Exp) ;

Case -> 'case' (Logic_Exp | Funcall | Var_Name | Atomic | Composite) 'of'

((CaseTest '->' CaseRes+) (';' (CaseTest '->' CaseRes+))*)?

 'end'

